

Available online at www.sciencedirect.com

Journal of Fluorine Chemistry 120 (2003) 195-209

www.elsevier.com/locate/jfluchem

Preparation of α - or β -trifluoromethylated vinylstannanes and their cross-coupling reactions

In Howa Jeong^{*}, Young Sam Park, Myong Sang Kim, Yong Sup Song

Department of Chemistry, Yonsei University, Wonju 220-710, South Korea

Received 1 August 2002; received in revised form 19 October 2002; accepted 28 October 2002

Abstract

 α - or β -Trifluoromethylated vinylstannanes **1**, **2a**, **3** and **4** were prepared form 1,1-bis(phenylthio)-2,2,3,3,3-pentafluoropropylbenzene (5) via several steps. The cross-coupling arylation reactions of **1–4** with aryl iodides bearing a bromo, methoxy, methyl, nitro or trifluoromethyl group on para- or meta-position of benzene ring afforded the corresponding coupling products in good yields. Compounds **1**, **2a** and **4** underwent the acylation reaction with various types of acyl chlorides to give the corresponding trifluoromethylated enone derivatives in good yields. Reduction of trifluoromethylated enone derivatives with LiAlH₄, followed by Fridel-Craft's type of cyclization with AlCl₃ provided trifluoromethylated indene derivatives in good yields.

© 2002 Elsevier Science B.V. All rights reserved.

Keywords: Trifluoromethylated vinylstannane; Cross-coupling reaction; Arylation reaction; Acylation reaction

1. Introduction

The considerable efforts have been paid to the development of trifluoromethylated building blocks because of their potential to give new synthetic routes to a variety of trifluoromethylated compounds, some of which exhibit unique biological properties in the areas of agrochemicals, pharmaceuticals and material science [1,2]. In the course of our synthetic studies on trifluoromethylated building blocks, we are interested in the synthesis of α - or β trifluoromethylated vinylstannanes and utilization of these compounds to prepare trifluoromethylated compounds via cross-coupling reactions. Especially, this methodology can be utilized to synthesize potential mammary tumor inhibitors, such as trifluoromethylated triphenylethene [3,4], diphenylethene [5,6] and indene derivatives [7]. Although a variety of types of trifluoromethylated vinylmetal reagents, such as cadmium [8], copper [9,10], lithium [11–14], mercury [15] and zinc [16–22] has been synthesized and utilized previously, the preparation and synthetic utility of trifluoromethylated vinylstannane reagent have been quite limited. Only several papers described about

chemistry of trifluoromethylated vinylstannane reagent. The α -(trifluoromethyl)vinylstannane reagent bearing only hydrogens at β -position has been synthesized from the reaction of 2-bromotrifluoroisopropene with lithium tributylstannate in the presence of CuI and utilized for the cross-coupling reactions with acyl chlorides in the presence of catalytic amount of Pd(PPh₃)₂(Bn)Cl in HMPA at 65 °C to give α -(trifluoromethyl)vinyl ketone derivatives [23]. Ichikawa also carried out the reaction of α -(trifluoromethyl)vinylstannane reagent with α , β -unsaturated acyl chlorides in the presence of catalytic amount of Pd(PPh₃)₂Cl₂ and CuCN in toluene at 55-75 °C to give the desired NaZarov substrates [24]. We also reported about the preparation of a novel α -(trifluoromethyl)vinylstannane reagent bearing two phenyl groups at β-position and the cross-coupling reactions of it with aryl iodides to give trifluoromethylated triphenylethene derivatives [25]. Recently, Shen prepared α -fluoro- β -trifluoromethylvinylstannanes stereospecifically from the reaction of corresponding vinylsulfone with tributyltin hydride [26].

In the present paper, we would like to describe the preparation of α -trifluoromethyl- β , β -diphenylvinylstannane 1, (*E*)- α -trifluoromethyl- β -methyl- β -phenylvinylstannane 2a, β -fluoro- β -trifluoromethyl- α -phenylvinylstannane 3, and β trifluoromethyl- α , β -diphenylvinylstannane 4 reagents, and examine the palladium-promoted cross-coupling reactions of these reagents with aryl iodides and acyl chlorides.

^{*} Corresponding author. Tel.: +82-33-760-2240; fax: +82-33-763-4323. *E-mail address:* jeongih@dragon.yonsei.ac.kr (I.H. Jeong).

2. Results and discussion

2.1. Preparation of α - or β -trifluoromethylated vinylstannanes **1**–**4**

All trifluoromethylated vinylstannanes 1, 2a, 3 and 4 can be prepared from 1,1-bis(phenylthio)-2,2,3,3,3-pentafluoropropylbenzene (5) [27] via several steps. The reaction of 5 with a mixture of TiCl₄ (2 eq.) and LiAlH₄ (4 eq.) in THF at reflux temperature for 3 h provided an isomeric mixture of 2,3,3,3-tetrafluoro-1-phenyl-1-phenylthiopropene (6) in 92% yield [28]. Oxidation of $\mathbf{6}$ with MCPBA (2.5 eq.) in CH₂Cl₂ at reflux temperature for 24 h gave an isomeric mixture (16:84) of 2,3,3,3-tetrafluoro-1-phenyl-1-phenylsulfonylpropene (7) in 92% yield. Treatment of 7 with sodium thiophenoxide (4 eq.) in toluene at 0 °C for 24 h resulted in the formation of 3,3,3-trifluoro-1-phenyl-1-phenylsulfonyl-2-phenylthiopropene (8) in 81% yield. The choice of solvent and reaction temperature were quite important to give 8 in this reaction. The use of solvent, such as THF, CH₃CN or DMF, or elevated reaction temperature caused to form a significant amount of 1,2-bis(phenylthio)-3,3,3-trifluoro-1-phenylpropene. The reaction of 8 with phenyllithium (1.5 eq.) in toluene at -78 °C for 24 h afforded 3,3,3-trifluoro-1,1-diphenyl-2-phenylthiopropene (9) in 82% yield. Oxidation of 9 with MCPBA (2.5 eq.) in CH₂Cl₂ at reflux temperature for 24 h resulted in the formation of 3,3,3-trifluoro-1,1-diphenyl-2-phenylsulfonylpropene (10) in 94% yield. Finally, reaction of 10 with Bu₃SnH (1.5 eq.)/AIBN (10 mol%) in benzene at reflux temperature for 24 h yielded α -trifluoromethyl- β , β -diphenylvinylstannane 1 in 84% yield (Scheme 1). When 8 was reacted with methyllithium (1.5 eq.) in toluene at -78 °C for

24 h, an isomeric mixture of 1,1,1-trifluoro-3-phenyl-2-phenylthio-2-butene (11) in 68% yield. Oxidation of 11 with MCPBA (2.5 eq.) in CH_2Cl_2 at reflux temperature for 24 h resulted in the formation of an isomeric mixture of 1,1,1trifluoro-3-phenyl-2-phenylsulfonyl-2-butene (12) in 92% yield. The reaction of 12 with Bu₃SnH (1.5 eq.)/AIBN (10 mol%) in benzene at reflux temperature for 24 h yielded an isomeric mixture of α -trifluoromethyl- β -methyl- β -phenylvinylstannane 2 (E:Z = 81:19) in 67% yield (Scheme 1). The E and Z isomers were separated by column chromatography. The assignment of stereoisomer of 2 was based on the chemical shift of OCH₃ group in ¹H NMR spectrum after cross-coupling reaction of 2 with *p*-iodoanisole in the presence of $Pd(PPh_3)_4$ and CuI. Generally, the *p*-OCH₃ protons attached to benzene ring which are arranged to the same side with benzene ring are more shielded than those arranged to the other side [29]. Therefore, the chemical shift of p-OCH₃ protons attached to benzene ring which are arranged to the same side with benzene ring is 3.64 ppm, whereas the chemical shift of those protons arranged to the other side is 3.78 ppm. Another useful diagnosis for analysis of E and Z isomers of 2 is to use H-F homoallylic coupling constant. The H–F *cis* coupling constant (J = 2.7 Hz) is bigger than trans H–F coupling constant (J = 2.2 Hz).

Treatment of **7** with Bu₃SnH (3.0 eq.)/AIBN (10 mol%) in benzene at reflux temperature for 24 h resulted in the formation of β -fluoro- β -trifluoromethyl- α -phenylvinylstannane **3** (only *Z* isomer) in 75% yield (Scheme 2). Only one stereoisomer was observed in the GC–MS spectroscopy and the reducing product, (*E*)-2,3,3,3-tetrafluoro-1-phenylpropene, was not observed. The use of less than 3.0 eq. of tributyltin hydride caused to recover some amount of **7**. The assignment of stereoisomer **3** was made by the comparison

Scheme 1.

Scheme 2.

with ¹H and ¹⁹F NMR spectrum of authentic sample [30] after the conversion to reducing product **13** which can be obtained from the reaction of **3** with CsF (5 eq.) in methanol at 50 °C for 6 h. It was found that this reducing process from the vinylstannane reagents was stereospecific reaction and the reaction was proceeded with the retention of configuration [31]. ¹⁹F NMR spectrum of **13** exhibited a characteristic doublet of quartet ($J_{H,F} = 20.4$ Hz, $J_{F,CF_3} = 9.9$ Hz) at -125.62 ppm and ¹H NMR spectrum showed a doublet ($J_{H,F} = 21.0$ Hz) at 6.77 ppm. It is postulated that the appearance of doublet in ¹H and ¹⁹F NMR spectra is due to the *cis* H–F coupling. The stereospecifical result of stannylation of **7** can be rationalized by previous similar mechanism suggestion [32].

The reaction of **5** with 2.1 eq. of phenyllithium at -78 °C, followed by warming to 0 °C provided an isomeric mixture of 3,3,3-trifluoro-1,2-diphenyl-1-phenylthiopropene (**14**) in 87% yield. Oxidation of **14** with MCPBA resulted in the formation of 3,3,3-trifluoro-1,2-diphenyl-1-phenylsulfonyl-propene (**15**) in 87% yield. Treatment of **15** with Bu₃SnH (4.0 eq.)/AIBN (10 mol%) in benzene at reflux temperature for 24 h yielded an isomeric mixture of α -trifluoromethyl- α , β -diphenylvinylstannane **4** (*E*:*Z* = 12:88) in 38% yield (Scheme 3). The assignment of stereoisomer **4** was made by the comparison with ¹H and ¹⁹F NMR spectra of authentic sample [**3**] after cross-coupling reaction of **4** with *p*-iodoanisole in the presence of Pd(PPh₃)₄ and CuI.

2.2. Arylation of vinylstannanes **1–4** with iodobenzene derivatives

Since vinylstannane group is an excellent functionality for the carbon–carbon bond formation with electrophiles in the presence of palladium catalyst [33], we examined the reaction of **1** with any iodides bearing a substituent on benzene ring in the presence of several palladium catalyst. The use of Pd catalyst, such as Pd(PPh₃)₄ or Pd(PPh₃)₂Cl₂ in THF, DMF, toluene or HMPA did not provide any cross-coupling product. However, the cross-coupling reaction was well proceeded by using a catalytic system of 10 mol% Pd(PPh₃)₄ and 10 mol% CuI in DMF. The reaction was completed in 4 h at room temperature. Aryl bromides did not provide a cross-coupling adduct even at 80 °C. Therefore, aryl iodides bearing a bromo, methoxy, methyl, nitro or trifluoromethyl on para- or meta-position of benzene ring underwent the cross-coupling reaction with 1 in the presence of 10 mol% Pd(PPh₃)₄ and 10 mol% CuI in DMF at room temperature for 4 h, and the corresponding coupling products 16 were obtained in high yields. Unfortunately, the coupling product, formed from the reaction of 1 with aryl iodides bearing a methoxy or methyl on ortho-position of benzene ring, was obtained in less than 5% yield under the same reaction conditions, whereas a reducing product and homocoupling product (butadiene) were formed as major products. The heating of the reaction mixture at 80 °C resulted in the formation of a messy reaction mixture. The results of these reactions are summarized in Scheme 4 and Table 1. Although role of CuI in the coupling reaction is obscure, it was suggested that copper iodide facilitates the transmetallation step in the cross-coupling mechanism cycle [34].

Similarly, the reactions of (E)- β -methyl- β -phenyl- α -(trifluoromethyl)vinylstannane (**2a**) with aryl iodides in the presence of several palladium catalyst were also examined to give the corresponding coupling products **17**. The crosscoupling reaction was well proceeded by using a catalytic

Scheme 3.

Scheme 4.

Table 1The cross-coupling reactions of 1 with aryl iodide

Compound	npound X	
16a	Н	93
16b	<i>p</i> -Br	86
16c	p-OCH ₃	89
16d	p-CH ₃	88
16e	p-NO ₂	93
16f	p-CF ₃	90
16g	<i>m</i> -Br	88
16h	<i>m</i> -OCH ₃	80
16i	<i>m</i> -CH ₃	81
16j	$m-NO_2$	82
16k	<i>m</i> -CF ₃	85

 Table 2

 The cross-coupling reactions of 2a with aryl iodides

Compound	Х	Yield (%) ^a
17a	Н	80
17b	<i>p</i> -Br	74
17c	p-OCH ₃	85
17d	p-CH ₃	84
17e	$p-NO_2$	78
17f	m-OCH ₃	79
17g	<i>m</i> -CH ₃	86

^a Isolated yields.

^a Isolated yields.

system of 10 mol% Pd(PPh₃)₄ and 10 mol% CuI in DMF. The reaction was completed in 4 h at room temperature. The adopted reaction condition tolerated substituents, such as bromo, methoxy, methyl or nitro group on para- or metaposition of benzene ring. However, the coupling reaction with aryl iodides bearing a methoxy or methyl on orthoposition of benzene ring, was unsuccessful under the same reaction conditions. The results of the coupling reactions of 2a with any iodides are summarized in Scheme 5 and Table 2. It has been well known that diphenylethene derivatives, such as diethylstibestrol and dienestrol are useful mammary tumor inhibitors [5,6]. Replacement of alkyl or vinyl group in those compounds by trifluoromethyl substituent resulted in the enhancement of binding affinity as well as estrogenic activity [6]. However, the previous method for the preparation of trifluoromethylated diphenylethene derivatives has one drawback, such as synthesis of only symmetrical bis(trifluoromethyl) diphenylethene derivatives [6].

We introduced this process to the reaction of 3 with aryl iodides bearing a substituent on benzene ring in the presence

of palladium catalysts. When 3 was reacted with iodobenzene in the presence of a mixture of 10 mol% Pd(PPh₃)₄ and 10 mol% CuI in DMF at room temperature for 5 h, the crosscoupling product 18a was obtained in 70% yield. The use of bromobenzene instead of iodobenzene in the same reaction provided a trace amount of 18a along with several unidentified adducts. Aryl iodides bearing a bromo, chloro, fluoro, methoxy, methyl, or nitro group on para- or meta-position of benzene ring underwent the cross-coupling reaction with 3 under the same reaction condition, and the corresponding coupling products were obtained in 61-82% yields. The reaction of 3 with 2-iodotoluene under the same reaction condition also afforded the coupling product 18j in 71% yield, but the same reaction of 3 with o-iodoanisole and oiodobenzotrifluoride provided the only trace amount of corresponding products. All of these coupling reactions proceeded with retention of configuration at the double bond except for the reaction with para-iodonitrobenzene in which an E and Z isomeric mixture (75/25) of coupling product was obtained. The results of these reaction are summarized in Scheme 6 and Table 3.

The reactions of 3 with iodo substituted heterocyclic compounds were also examined. Therefore, when 3 was

Table 3The cross-coupling reactions of **3** with aryl iodides

Compound	Х	Yield (%) ^a
18a	Н	70
18b	<i>p</i> -Br	68
18c	p-Cl	67
18d	p-F	61
18e	p-OCH ₃	82
18f	p-CH ₃	71
18g	$p-NO_2$	77 ^b
18h	m-OCH ₃	79
18i	<i>m</i> -CH ₃	68
18j	o-CH ₃	71

^a Isolated yields.

^b An isomeric mixture of product (75/25) was obtained.

Table 4

The	cross-coupling	reactions	of 4	with	arvl	iodides
	eross coupring	reactions	•••••			rouraeo

Compound	Х	Yield (%) ^{a,b}	
21a	Н	56	
21b	<i>p</i> -F	50	
21c	p-Cl	45	
21d	<i>p</i> -Br	50	
21e	p-OCH ₃	58	
21f	p-CF ₃	63	
21g	p-NO ₂	64	
21h	m-CH ₃	51	
21i	m-OCH ₃	65	
21j	<i>m</i> -CF ₃	53	

^a Isolated yields.

^b An isomeric mixture of product (E:Z = 12:88) was obtained.

reacted with 2-iodothiophene and 2-iodopyrazine under the same reaction condition, the corresponding coupling products **19** and **20** were obtained in 63 and 65% yields, respectively (Scheme 7).

Finally, coupling reactions of **4** with aryl iodides bearing a substituent on benzene ring in the presence of palladium catalysts were also performed under the employed condition. Treatment of **4** with iodobenzene in the presence of a mixture of 10 mol% Pd(PPh₃)₄ and 10 mol% CuI in DMF at room temperature for 4 h, the cross-coupling product **21a** was obtained in 56% yield. Aryl iodides bearing a bromo, chloro, fluoro, methoxy, methyl, nitro or trifluoromethyl group on para- or meta-position of benzene ring underwent the cross-coupling reaction with **4** under the same reaction condition, and the corresponding coupling products were obtained in 45–65% yields. The results of these reaction are summarized in Scheme 8 and Table 4.

2.3. Acylation of vinylstannanes **1–4** with acyl chloride derivatives

We examined palladium-promoted acylation of this reagent with acyl chlorides to give β , β -diphenyl- α -trifluoromethylated enone derivatives which are useful intermediates for the formation of novel 1,3-disubstituted 2-(trifluoromethyl)indene derivatives via Friedel-Craft's type of the cyclization. Since nonfluorinated 1,3-disubstituted indene derivative, such as Indenestrol A exhibited mammary tumor inhibiting antiestrogen activity, it is expected that 1,3disubstituted 2-(trifluoromethyl)indene derivatives also have

Scheme 8.

Scheme 9.

a potential similar activity. First of all, the acylation reaction of **1** with acetyl chloride was carried out in the presence of several palladium catalyst. The use of Pd catalyst, such as Pd(PPh₃)₄ or Pd(PPh₃)₂Cl₂ in THF, DMF, toluene or HMPA did not provide any acylated product. However, acylation reaction to give acylated product 22 was successfully accomplished by using a mixture of 10 mol% Pd(PPh₃)₂Cl₂ and 10 mol% CuCN in toluene at 50 °C for 6 h. The higher temperature (80 °C) was needed for the completion of acylation of 1 with types of benzoyl chlorides bearing a bromo, methoxy, methyl, or nitro on the benzene ring. Furthermore, starting material 1 also underwent the acylation reaction with various types of acyl chlorides, such as ethyl chloroformate, furoyl chloride, naphthoyl chloride to give the corresponding trifluoromethylated enone derivatives 22 at 80 °C for 6 h. The experimental results of the acylation reactions are summarized in Scheme 9 and Table 5.

Reduction of 22a with $LiAlH_4$ (1.5 eq.) in ether at reflux temperature for 3 h afforded the corresponding allylic alcohols 23a in 71% yield. The use of NaBH₄ did not provide the desired product, whereas the starting material was always recovered. The Fridel-Craft's type of cyclization of 23a was successfully accomplished to give 2-trifluoromethyl-3methyl-1-phenylindene (24a) by using $AlCl_3$ (1.2 eq.) in methylene chloride at -78 °C, followed by the slowly warming to room temperature. The use of dilute H₂SO₄ instead of AlCl₃ at reflux temperature caused not only to decrease the yield of indene derivatives 24a, but also to extend the reaction time. The more excess of $AlCl_3$ (2.0 eq.) was necessary to carry out the cyclization of 23d because of possible coordination of oxygen of methoxy group with AlCl₃. Reduction of other types of enone derivatives 22, followed by treatment with AlCl₃ under the same reaction condition also provided the corresponding 1,3-disubstituted 2-(trifluoromethyl)indene derivatives 24 in good yields. The

Table 5The acylation reactions of 1 with acyl chlorides

Compound	T (°C)	R	Yield (%) ^a
22a	50	CH ₃	68
22b	80	C ₆ H ₅	80
22c	80	(o-CH ₃)-C ₆ H ₄	78
22d	80	(p-CH ₃)-C ₆ H ₄	88
22e	80	$(p-OCH_3)-C_6H_4$	85
22f	80	$(m-NO_2)-C_6H_4$	72
22g	80	$(m-CH_3)-C_6H_4$	81
22h	80	$(m-Br)-C_6H_4$	77
22i	80	C_2H_5O	62
22j	80	2-Furanyl	75
22k	80	2-Naphthyl	86

^a Isolated yields.

Table 6

The synthesis of 1,3-disubstituted 2-trifluoromethylated indene do	erivatives
24	

Compound	R	Yield of 23 (%) ^a	Yield of 24 (%) ^a
23a, 24a	CH ₃	71	76
23b, 24b	C ₆ H ₅	74	78
23c, 24c	$(p-CH_3)-C_6H_4$	69	71
23d, 24d	$(p-OCH_3)-C_6H_4$	73	68
23e, 24e	2-Naphthyl	71	74

^a Isolated yields.

experimental results of reduction and cyclization reactions are summarized in Scheme 10 and Table 6.

The cross-coupling reaction of **2a** with acyl chlorides were also examined in a similar manner. When **2a** was reacted with acetyl chloride or benzoyl chloride in the presence of 10 mol% Pd(PPh₃)₂Cl₂ and 10 mol% CuCN in toluene at 50–80 °C for 6 h, the corresponding acylated

Scheme 10

Scheme 11.

products **25** and **26** were obtained in 72 and 61% yields, respectively. Reduction of **26** with LiAlH₄ (1.5 eq.) in ether at reflux temperature for 3 h afforded the corresponding allylic alcohol, 2-trifluoromethyl-1,3-diphenyl-2-buten-1-ol (**27**) in 83% yield. Cyclization of **27** was successfully accomplished to give indene derivative **28** in 78% yield by using AlCl₃ (1.2 eq.) in methylene chloride at -78 °C, followed by the slowly warming to room temperature (Scheme 11).

Unfortunately, the acylation reaction of **3** with benzoyl chloride under the same reaction condition provided the acylated product in less than 10% yield, whereas homocoupling product, butadiene, was obtained as a major product. It seems likely that slow transmetallation between **3** and oxidative palladium addition intermediate to benzoyl chloride leads to the formation of homocoupling product. We employed several Pd catalyst conditions, such as $Pd(PPh_3)_4$ or $Pd(PPh_3)_2Cl_2$ in THF, DMF, toluene or HMPA, but it was failed to have the desired acylated product.

The acylation reaction of **4** with acyl chlorides was also performed under the same reaction condition. Therefore,

when **4** was reacted with acetyl chloride or benzoyl chloride in the presence of a mixture of 10 mol% Pd(PPh₃)₂Cl₂ and 10 mol% CuCN in toluene at 80 °C for 6 h, the acylated products **29** (*E*:*Z* = 12:88) and **30** (*E*:*Z* = 12:88) were formed in 59 and 57% yields, respectively. Reduction of **30** with LiAlH₄ (1.5 eq.) in ether at reflux temperature for 3 h afforded the corresponding allylic alcohols **31** in 59% yield. Cyclization of **31** in the presence of AlCl₃ (1.2 eq.) in methylene chloride at -78 °C, followed by the slowly warming to room temperature resulted in the formation of indene derivative **32** in 73% yield (Scheme 12).

3. Experimental

¹H NMR and ¹⁹F NMR spectra were recorded on a 100 MHz Bruker AC-100F NMR spectrometer with tetramethylsilane (TMS) and CFCl₃ as an internal standard, respectively, and the upfield as negative. All chemical shifts (δ) are expressed in parts per million and coupling constant (*J*) are given in Hertz. Infrared spectra were determined on a

Scheme 12.

Mattson Genesis series FT High Resolution Spectrophotometer. Mass spectra were obtained by using Hewlett-Packard 5890 GC/5970B MSD (EI, 70 eV). Melting points were determined in open capillary tubes and are uncorrected.

Commercially available reagents were purchased from Aldrich, Lancaster, Tokyo Kasei and Fluorochem. All solvent were dried by general purification method.

3.1. 2-Tributylstannanyl-3,3,3-trifluoro-1,1diphenylpropene 1

3.1.1. 2,3,3,3-Tetrafluoro-1-phenyl-1-phenylthiopropene 6

A mixture of titanium tetrachloride (5.50 ml, 50 mmol) and lithium aluminum hydride (3.80 g, 0.1 mol) in dry THF (200 ml) was stirred at room temperature for 1 h under nitrogen atmosphere and then heated to boiling. 1,1-bis-(phenylthio)-2,2,3,3,3-pentafluoropropylbenzene (10.65 g, 25 mmol) in THF was added under reflux and the reaction mixture was kept boiling for further 3 h. After cooling, the reaction mixture was poured on ice water, neutralized with conc. HCl and extracted with ether. The ether solution was dried and chromatographed on SiO₂ column. Elution with nhexane provided **6** in 92% yield. **6**: oil; ¹H NMR (CDCl₃) δ 7.50–7.16 (m, 10H); ¹⁹F NMR (CDCl₃) δ –63.87 (d, J = 8.6 Hz, 3F, one isomer), -64.84 (d, J = 11.1 Hz, 3F, the other isomer), -115.13 (q, J = 8.6 Hz, 1F, one isomer), -119.00 (q, J = 11.1 Hz, 1F, the other isomer); MS, m/z(relative intensity) 298 (, 31), 229 (61), 196 (91), 121 (100), 77 (8); IR (neat) 3061, 2958, 1664, 1581, 1476, 1443, 1328, 1201, 1137, 748, 691 cm⁻¹. Anal. Calcd. for C₁₅H₁₀F₄S: C, 62.27; H, 3.38. Found: C, 62.01; H, 3.30.

3.1.2. 2,3,3,3-Tetrafluoro-1-phenyl-1phenylsulfonylpropene 7

A mixture of 6 (7.45 g, 25 mmol) and MCPBA (21.5 g) in dry CH₂Cl₂ (150 ml) was heated to reflux for 24 h under nitrogen atmosphere. After cooling, the reaction mixture was washed with a mixture of saturated NaHCO₃ and 10% NaHSO₃ solution and extracted with CH₂Cl₂. The solution was dried and chromatographed on SiO₂ column. Elution with *n*-hexane and ethyl acetate (4:1) provided 7 in 92% yield. 7: mp 104–106 °C; ¹H NMR (CDCl₃) δ 7.65–7.01 (m, 10H); ¹⁹F NMR (CDCl₃) δ -62.49 (d, J = 4.2 Hz, 3F, one isomer), -66.25 (d, J = 4.2 Hz, 3F, the other isomer), -102.16 (q, J = 4.2 Hz, 1F, one isomer), -108.77 (q, J = 8.2 Hz, 1F, the other isomer); MS, m/z (relative intensity) 330 (M⁺, 48), 266 (5), 189 (53), 169 (100), 125 (52), 77 (47), 51(33); IR (KBr) 3065, 1652, 1447, 1347, 1306, 1196, 1156, 1088, 761, 696 cm⁻¹. Anal. Calcd. for C₁₅H₁₀F₄O₂S: C, 54.54; H, 3.05. Found: C, 54.17; H, 3.14.

3.1.3. 3,3,3-Trifluoro-1-phenyl-1-phenylsulfonyl-2-phenylthiopropene 8

To a dry toluene (100 ml) solution of sodium thiophenoxide formed in situ from NaH (3.60 g, 90 mmol) and thiophenol (9.90 g, 90 mmol) was added **7** (7.43 g, 22.5 mol) in toluene at 0 °C and the reaction mixture was stirred at 0 °C for 24 h. The reaction mixture was washed with water and then extracted with ether twice. The solution was dried and chromatographed on SiO₂ column. Elution with *n*-hexane and ethyl acetate (4:1) provided **8** in 81% yield. **8**: mp 94–96 °C; ¹H NMR (CDCl₃) δ 7.90–6.85 (m, 15H); ¹⁹F NMR (CDCl₃) δ –53.58 (s, 3F, one isomer), –54.50 (s, 3F, the other isomer); MS, *m*/*z* (relative intensity) 420 (*M*⁺, 17), 259 (13), 239 (100), 210 (78), 186 (67), 109 (77), 77 (72), 65 (42), 51 (38); IR (KBr) 3061, 2962, 2924, 1726, 1581, 1476, 1445, 1326, 1260, 1146, 1084, 1024, 811, 753, 727, 689 cm⁻¹. Anal. Calcd. for C₂₁H₁₅F₃O₂S₂: C, 59.99; H, 3.60. Found: C, 59.71; H, 3.51.

3.1.4. 3,3,3-Trifluoro-1,1-diphenyl-2-phenylthiopropene 9

To a dry toluene (50 ml) solution of **8** (5.10 g, 12 mmol) was added phenyllithium (11.4 ml, 20.6 mmol) in toluene at -78 °C and the reaction mixture was stirred at -78 °C for 24 h. The reaction mixture was washed with water and then extracted with ether twice. The solution was dried and chromatographed on SiO₂ column. Elution with *n*-hexane provided **9** in 82% yield. **9**: mp 68–70 °C; ¹H NMR (CDCl₃) δ 7.37–7.02 (m, 15H); ¹⁹F NMR (CDCl₃) δ –56.22 (s, 3F); MS, *m/z* (relative intensity) 356 (*M*⁺, 100), 287 (52), 254 (19), 239 (25), 227 (25), 210 (27), 178 (30), 165 (34), 152 (10), 109 (8), 77 (23); IR (KBr) 3059, 2926, 2854, 1721, 1582, 1491, 1443, 1293, 1253, 1184, 1033, 991, 742, 699 cm⁻¹. Anal. Calcd. for C₂₁H₁₅F₃S: C, 70.77; H, 4.24. Found: C, 70.49; H, 4.19.

3.1.5. 3,3,3-Trifluoro-1,1-diphenyl-2-

phenylsulfonylpropene 10

A mixture of **9** (6.2 g, 16 mmol) and MCPBA (13.8 g) in dry CH₂Cl₂ (150 ml) was heated to reflux for 24 h under nitrogen atmosphere. After cooling, the reaction mixture was washed with a mixture of saturated NaHCO₃ and 10% NaHSO₃ solution and extracted with CH₂Cl₂. The solution was dried and chromatographed on SiO₂ column. Elution with *n*-hexane and ethyl acetate (4:1) provided **10** in 94% yield. **10**: mp 111–113 °C; ¹H NMR (CDCl₃) δ 7.60–6.97 (m, 15H); ¹⁹F NMR (CDCl₃) δ –52.14 (s, 3F); MS, *m/z* (relative intensity) 388 (*M*⁺, 10), 246 (100), 227 (48), 178 (25), 165 (10), 125 (17), 77 (57), 51 (34); IR (KBr) 3062, 3030, 1583, 1490, 1449, 1323, 1294, 1247, 1192, 1154, 1083, 998, 759, 735, 687 cm⁻¹. Anal. Calcd. for C₂₁H₁₅F₃O₂S: C, 64.94; H, 3.89. Found: C, 64.69; H, 3.80.

3.1.6. 2-Tributylstannanyl-3,3,3-trifluoro-1,1diphenylpropene 1

To a dry benzene (50 ml) solution of **10** (3.88 g, 10 mmol) was added tributyltin hydride (15 mmol) and AIBN (catalytic amount) and the reaction mixture was heated at 80–90 °C for 24 h. After cooling, the reaction mixture was concentrated and then the residue was chromatographed on SiO₂ column. Elution with *n*-hexane provided **1** in 84% yield. **1**: oil; ¹H NMR (CDCl₃) δ 7.34–7.12 (m,

10H), 1.53–0.59 (m, 27H); ¹⁹F NMR (CDCl₃) δ –49.47 (s, 3F); MS, *m/z* (relative intensity) 481 (*M*⁺ – 56, 4), 210 (16), 209 (100), 207 (12), 189 (11), 183 (9), 177 (5), 139 (3), 57 (6); IR (neat) 3058, 3025, 2957, 2924, 2854, 2362, 2342, 1491, 1445, 1243, 1170, 1126, 1074, 764, 699 cm⁻¹. Anal. Calcd. for C₂₇H₃₇F₃Sn: C, 60.36; H, 6.94. Found: C, 60.54; H, 6.83.

3.2. 2-Tributylstannanyl-1,1,1-trifluoro-3-phenyl-2butene 2

3.2.1. 1,1,1-Trifluoro-3-phenyl-2-phenylthio-2-butene 11

To a dry toluene (50 ml) solution of 8 (3.38 g, 8.07 mmol) was added methyllithium (8.07 ml, 12.1 mmol) in toluene at -78 °C and the reaction mixture was stirred at -78 °C for 24 h. The reaction mixture was washed with water and then extracted with ether twice. The solution was dried and chromatographed on SiO_2 column. Elution with *n*-hexane provided **11** in 68% yield. **11**: mp 56–57 °C; ¹H NMR (CDCl₃) δ 7.44–7.09 (m, 10H), 2.42 (q, J = 2.3 Hz, 3H, one isomer), 2.22 (q, J = 2.1 Hz, 3H, the other isomer); ¹⁹F NMR (CDCl₃) δ -56.29 (s, 3F, one isomer), -57.58 (s, 3F, the other isomer); MS, m/z (relative intensity) 294 (M^+ , 100), 279 (6), 253 (2), 225 (53), 197 (17), 165 (27), 147 (91), 133 (13), 115 (43), 91 (10), 77 (38); IR (KBr) 3118, 2988, 1716, 1660, 1541, 1507, 1457, 1340, 1151, 1086, 1059, 742, 699 cm⁻¹. Anal. Calcd. for C₁₆H₁₃F₃S: C, 65.29; H, 4.45. Found: C, 65.08; H, 4.60.

3.2.2. 1,1,1-Trifluoro-3-phenyl-2-phenylsulfonyl-2butene 12

A mixture of 11 (2.33 g, 7.91 mmol) and MCPBA (3.4 g) in dry CH₂Cl₂ (150 ml) was heated to reflux for 24 h under nitrogen atmosphere. After cooling, the reaction mixture was washed with a mixture of saturated NaHCO₃ and 10% NaHSO₃ solution and extracted with CH₂Cl₂. The solution was dried and chromatographed on SiO₂ column. Elution with *n*-hexane and ethyl acetate (4:1) provided **12** in 92% yield. **12**: mp 107–109 °C; ¹H NMR (CDCl₃) δ 8.08–7.98 (m, 2H), 7.66–7.07 (m, 8H), 2.63 (q, J = 1.5 Hz, 3H, one isomer), 2.36 (q, J = 2.3 Hz, 3H, the other isomer); ¹⁹F NMR (CDCl₃) δ -51.85 (s, 3F, one isomer), -54.56 (s, 3F, the other isomer); MS, m/z (relative intensity) 326 (M^+ , 8), 260 (25), 241 (19), 221 (19), 164 (32), 125 (18), 115 (71), 77 (100), 51 (59); IR (KBr) 3063, 2926, 2340, 1736, 1593, 1490, 1446, 1330, 1292, 1227, 1152, 1079, 1030, 764, 695 cm⁻¹. Anal. Calcd. for C₁₆H₁₃F₃O₂S: C, 58.89; H, 4.02. Found: C, 58.67; H, 4.11.

3.2.3. 2-Tributylstannanyl-1,1,1-trifluoro-3-phenyl-2-butene **2**

To a dry benzene (50 ml) solution of **12** (2.61 g, 8 mmol) was added tributyltin hydride (12 mmol) and AIBN (catalytic amount) and the reaction mixture was heated at 80–90 $^{\circ}$ C for 24 h. After cooling, the reaction mixture was concentrated and then the residue was chromatographed on

SiO₂ column. Elution with *n*-hexane provided **2a** and **2b** in 67% yield. **2a**: oil; ¹H NMR (CDCl₃) δ 7.38–6.69 (m, 5H), 2.12 (q, J = 2.2 Hz, 3H), 1.67–0.76 (m, 27H); ¹⁹F NMR (CDCl₃) δ -50.09 (s, 3F); MS, *m/z* (relative intensity) 419 $(M^+ - 56, 6), 361(1), 305(1), 253(9), 177(1), 147(100),$ 127 (8), 69 (7); IR (neat) 3021, 2956, 2924, 2923, 2853, 1595, 1463, 1376, 1273, 1245, 1134, 1106, 1075, 998, 873, 763, 700 cm⁻¹. Anal. Calcd. for C₂₂H₃₅F₃Sn: C, 55.60; H, 7.42. Found: C, 55.81; H, 7.49. **2b**: oil; ¹H NMR (CDCl₃) δ 7.32–7.06 (m, 5H), 2.26 (q, J = 2.7 Hz, 3H), 1.71–0.83 (m, 27H); ¹⁹F NMR (CDCl₃) δ -51.91 (s, 3F); MS, *m/z* (relative intensity) 419 $(M^+ - 56, 6)$, 361 (1), 305 (1), 253 (5), 177 (1), 147 (100), 127 (6), 69 (4); IR (neat) 3021, 2956, 2924, 2923, 2853, 1595, 1463, 1376, 1273, 1245, 1134, 1106, 1075, 998, 873, 763, 700 cm⁻¹. Anal. Calcd. for C₂₂H₃₅F₃Sn: C, 55.60; H, 7.42. Found: C, 55.89; H, 7.53.

3.3. 1-Tributylstannanyl-2,3,3,3-tetrafluoro-1phenylpropene **3**

To a dry benzene (50 ml) solution of 7 (2.64 g, 8 mmol) was added tributyltin hydride (24 mmol) and AIBN (catalytic amount) and the reaction mixture was heated at 80-90 °C for 24 h. After cooling, the reaction mixture was concentrated and then the residue was chromatographed on SiO_2 column. Elution with *n*-hexane provided 3 in 75% yield. **3**: oil; ¹H NMR (CDCl₃) δ 7.37–6.89 (m, 5H), 1.72–0.71 (m, 27H); ¹⁹F NMR (CDCl₃) δ –62.40 (d, J = 10.2 Hz, 3F), -104.8 (q, J = 10.4 Hz, 1F); MS, m/z (relative intensity) 423 (M^+ – 56, 4), 310 (4), 291 (7), 253 (100), 251 (77), 195 (5), 177 (26), 151 (98), 121 (7), 41 (9), 29 (7); IR (CCl₄) 3078, 3061, 2924, 2958, 2925, 2872, 1671, 1596, 1554, 1490, 1378, 1310, 1196, 1143, 1093, 1001, 961, 893, 866, 698, 670 cm⁻¹. Anal. Calcd. for C₂₁H₃₂F₄Sn: C, 52.64; H, 6.73. Found: C, 52.29; H, 6.65.

3.4. 1-Tributylstannanyl-3,3,3-trifluoro-1,2diphenylpropene **4**

3.4.1. 3,3,3-Trifluoro-1,2-diphenyl-1-phenylthiopropene 14 To a dry THF (50 ml) solution of 1,1-bis(phenylthio)-2,2,3,3,3-pentfluoropropylbenzene (2.13 g, 5 mmol) was added phenyllithium (10 mmol) at -78 °C and the reaction mixture was slowly warmed to 0 °C. After quenching with 5% HCl, the reaction mixture was extracted with ether twice. The ether solution was dried and chromatographed on SiO₂ column. Elution with *n*-hexane provided 14 in 87% yield. 14: oil; ¹H NMR (CDCl₃) δ 7.52–7.32 (m, 5H), 7.29–6.82 (m, 10H); ¹⁹F NMR (CDCl₃) δ –55.49 (s, 3F, one isomer), -56.21 (s, 3F, the other isomer); MS, *m/z* (relative intensity) 356 (*M*⁺, 100), 287 (15), 247 (74), 227 (97), 178 (24), 121 (22); IR (neat) 3058, 1605, 1583, 1309, 1238, 1159, 1114, 750, 707 cm⁻¹. Anal. Calcd. for C₂₁H₁₅F₃S: C, 70.77; H, 4.24. Found: C, 70.95; H, 4.18.

3.4.2. 3,3,3-Trifluoro-1,2-diphenyl-1phenylsulfonylpropene **15**

A mixture of **14** (1.49 g, 5 mmol) and MCPBA (8.6 g) in dry CH₂Cl₂ (100 ml) was heated to reflux for 24 h under nitrogen atmosphere. After cooling, the reaction mixture was washed with a mixture of saturated NaHCO₃ and 10% NaHSO₃ solution and extracted with CH₂Cl₂. The solution was dried and chromatographed on SiO₂ column. Elution with *n*-hexane and ethyl acetate (4:1) provided **15** in 87% yield. **15**: mp 149–150 °C; ¹H NMR (CDCl₃) δ 7.68–7.26 (m, 10H), 7.15–6.71 (m, 5H); ¹⁹F NMR (CDCl₃) δ –53.01 (s, 3F, one isomer), –54.05 (s, 3F, the other isomer); MS, *m/z* (relative intensity) 388 (*M*⁺, 3), 263 (23), 247 (100), 227 (56), 178 (18); IR (KBr) 3058, 1490, 1444, 1302, 1252, 1167, 1124, 1087, 1052, 978, 748, 703 cm⁻¹. Anal. Calcd. for C₂₁H₁₅F₃O₂S: C, 64.94; H, 3.89. Found: C, 64.69; H, 3.82.

3.4.3. 1-Tributylstannanyl-3,3,3-trifluoro-1,2diphenylpropene **4**

To a dry benzene (50 ml) solution of 15 (1.94 g, 5 mmol) was added tributyltin hydride (20 mmol) and AIBN (catalytic amount) and the reaction mixture was heated at 80–90 °C for 24 h. After cooling, the reaction mixture was concentrated and then the residue was chromatographed on SiO₂ column. Elution with *n*-hexane and ethyl acetate (20:1) provided **4** in 38% yield. **4**: oil; ¹H NMR (CDCl₃) δ 7.35–6.60 (m, 10H), 1.67–1.16 (m, 27H, one isomer), 1.0–0.52 (m, 27H, the other isomer); ¹⁹F NMR (CDCl₃) δ –56.04 (s, 3F, one isomer), –62.03 (s, 3F, the other isomer); MS, *m*/*z* (relative intensity) 481 (*M*⁺ – 56, 13), 461 (35), 347 (13), 227 (16), 209 (100), 177 (14), 41 (20); IR (neat) 3025, 2985, 1300, 1134, 1106, 751, 697 cm⁻¹. Anal. Calcd. for C₂₇H₃₇F₃Sn: C, 60.36; H, 6.94. Found: C, 60.58; H, 7.03.

3.5. General procedure for the preparation of **16**, **17**, **18**, **19**, **20** and **21**

To a DMF (5 ml) solution of aryl iodide (0.5 mmol) and vinylstannane **1**, **2a**, **3** or **4** (0.4 mmol) was added Pd(PPh₃)₄ (10 mol%) and CuI (10 mol%), and the reaction mixture was stirred at room temperature for 4 h under argon atmosphere. After the reaction mixture was quenched with water and then washed with 5% KF solution and brine, solution was extracted with ether twice. The ether solution was dried and chromatographed on SiO₂ column. Elution with a mixture of *n*-hexane and ethyl acetate (20:1) provided a desired product **16**, **17**, **18**, **19**, **20** or **21**.

16a: mp 63–65 °C; ¹H NMR (CDCl₃) δ 7.51–7.11 (m, 10H), 7.02–6.78 (m, 5H); ¹⁹F NMR (CDCl₃) δ –56.26 (s, 3F); MS, *m/z* (relative intensity) 324 (*M*⁺, 100), 283 (19), 255 (40), 239 (18), 178 (10), 152 (5), 126 (9), 77 (5); IR (KBr) 3077, 3026, 2924, 1327, 1224, 1170, 1142, 1113, 757, 716, 697 cm⁻¹. Anal. Calcd. for C₂₁H₁₅F₃: C, 77.76; H, 4.66. Found: C, 77.55; H, 4.71.

16b: mp 102–103 °C; ¹H NMR (CDCl₃) δ 7.93–7.84 (m, 2H), 7.54–7.10 (m, 12H); ¹⁹F NMR (CDCl₃) δ –56.30 (s,

3F); MS, m/z (relative intensity) 404 (M^+ + 2, 100), 402 (M^+ , 100), 323 (6), 283 (54), 254 (50), 246 (5), 141 (10), 126 (20); IR (KBr) 3063, 2924, 1462, 1224, 1367, 1260, 1116, 1013, 804, 590 cm⁻¹. Anal. Calcd. for C₂₁H₁₄BrF₃: C, 62.55; H, 3.50. Found: C, 62.31; H, 3.62.

16c: mp 67–68 °C; ¹H NMR (CDCl₃) δ 7.84–6.69 (m, 14H), 3.75 (s, 3H); ¹⁹F NMR (CDCl₃) δ –56.47 (s, 3F); MS, *m/z* (relative intensity) 354 (*M*⁺, 100), 285 (7), 270 (11), 241 (8), 165 (5), 120 (3); IR (KBr) 3058, 2926, 1661, 1588, 1511, 1445, 1327, 1250, 1226, 1170, 1111, 1034, 757, 701 cm⁻¹. Anal. Calcd. for C₂₂H₁₇F₃O: C, 74.57; H, 4.84. Found: C, 74.29; H, 4.72.

16d: mp 88–90 °C; ¹H NMR (CDCl₃) δ 7.32–6.89 (m, 14H), 2.27 (s, 3H); ¹⁹F NMR (CDCl₃) δ –56.37 (s, 3F); MS, *m*/*z* (relative intensity) 338 (*M*⁺, 100), 323 (12), 297 (9), 269 (16), 252 (21), 189 (8), 165 (10), 126 (12); IR (KBr) 3027, 2923, 1491, 1445, 1327, 1226, 1171, 1141, 1112, 811, 756, 698 cm⁻¹. Anal. Calcd. for C₂₂H₁₇F₃: C, 78.09; H, 5.06. Found: C, 78.31; H, 4.95.

16e: mp 92–94 °C; ¹H NMR (CDCl₃) δ 8.12–8.03 (m, 2H), 7.46–6.91 (m, 12H); ¹⁹F NMR (CDCl₃) δ –55.93 (s, 3F); MS, *m*/*z* (relative intensity) 369 (M^+ , 100), 301 (5), 253 (28), 176 (4), 126 (8), 113 (4); IR (KBr) 3431, 3106, 1627, 1598, 1520, 1493, 1444, 1349, 1175, 1141, 1107, 848, 795, 765, 723, 701 cm⁻¹. Anal. Calcd. for C₂₁H₁₄F₃NO₂: C, 68.29; H, 3.82. Found: C, 68.01; H, 3.75.

16f: mp 79–81 °C; ¹H NMR (CDCl₃) δ 7.87–6.90 (m, 14H); ¹⁹F NMR (CDCl₃) δ –56.09 (s, 3F), –63.26 (s, 3F); MS, *m*/*z* (relative intensity) 392 (*M*⁺, 100), 373 (10), 351 (14), 323 (23), 283 (25), 253 (18); IR (KBr) 3025, 1493, 1446, 1347, 1225, 1175, 1141, 1115, 799, 765, 701 cm⁻¹. Anal. Calcd. for C₂₂H₁₄F₆: C, 67.35; H, 3.60. Found: C, 67.07; H, 3.66.

16g: oil; ¹H NMR (CDCl₃) δ 7.33–6.96 (m, 14H); ¹⁹F NMR (CDCl₃) δ –56.20 (s, 3F); MS, *m/z* (relative intensity) 404 (*M*⁺ + 2, 100), 402 (*M*⁺, 100), 323 (8), 283 (46), 254 (66), 246 (11), 141 (21), 126 (17); IR (neat) 3063, 2924, 1462, 1224, 1367, 1260, 1116, 1013, 890, 782, 749, 690 cm⁻¹. Anal. Calcd. for C₂₁H₁₄BrF₃: C, 62.55; H, 3.50. Found: C, 62.21; H, 3.60.

16h: mp 61–63 °C; ¹H NMR (CDCl₃) δ 7.34–6.72 (m, 14H), 3.70 (s, 3H); ¹⁹F NMR (CDCl₃) δ –56.14 (s, 3F); MS, *m*/*z* (relative intensity) 354 (*M*⁺, 100), 285 (14), 270 (65), 239 (14), 165 (10), 149 (8), 119 (7); IR (KBr) 3059, 2959, 1677, 1597, 1511, 1447, 1326, 1251, 1146, 1081, 889, 756, 695 cm⁻¹. Anal. Calcd. for C₂₂H₁₇F₃O: C, 74.57; H, 4.84. Found: C, 74.34; H, 4.76.

16i: mp 105–105 °C; ¹H NMR (CDCl₃) δ 7.33–6.96 (m, 14H), 2.24 (s, 3H); ¹⁹F NMR (CDCl₃) δ –56.20 (s, 3F); MS, *m*/*z* (relative intensity) 338 (*M*⁺, 100), 283 (25), 254 (26), 226 (4), 165 (8), 126 (7); IR (KBr) 3026, 2924, 1336, 1244, 1194, 1159, 1122, 1092, 798, 752, 696 cm⁻¹. Anal. Calcd. for C₂₂H₁₇F₃: C, 78.09; H, 5.06. Found: C, 77.80; H, 4.98.

16j: oil; ¹H NMR (CDCl₃) δ 8.13–6.85 (m, 14H); ¹⁹F NMR (CDCl₃) δ –56.17 (s, 3F); MS, *m/z* (relative intensity) 369 (*M*⁺, 100), 352 (7), 301 (7), 283 (16), 253 (36), 239 (8),

165 (6), 126 (9); IR (neat) 3430, 3105, 1625, 1595, 1524, 1490, 1442, 1347, 1175, 1107, 878, 795, 765, 723, 698 cm⁻¹. Anal. Calcd. for $C_{21}H_{14}F_3NO_2$: C, 68.29; H, 3.82. Found: C, 68.02; H, 3.88.

16k: oil; ¹H NMR (CDCl₃) δ 7.41–6.82 (m, 14H); ¹⁹F NMR (CDCl₃) δ –56.19 (s, 3F), -63.35 (s, 3F); MS, *m/z* (relative intensity) 392 (*M*⁺, 100), 373 (7), 351 (11), 323 (17), 283 (23), 253 (15); IR (neat) 3025, 1492, 1445, 1348, 1224, 1173, 1143, 1113, 878, 795, 765, 701 cm⁻¹. Anal. Calcd. for C₂₂H₁₄F₆: C, 67.35; H, 3.60. Found: C, 67.01; H, 3.53.

17a: oil; ¹H NMR (CDCl₃) δ 7.57–7.13 (m, 10H), 1.79 (q, J = 2.2 Hz, 3H); ¹⁹F NMR (CDCl₃) δ –56.30 (s, 3F); MS, *m/z* (relative intensity) 262 (M^+ , 100), 247 (35), 227 (36), 193 (46), 178 (59), 165 (10), 115 (25), 91 (11), 77 (10); IR (neat) 3060, 2962, 2853, 1578, 1445, 1325, 1260, 1215, 1156, 1110, 1014, 935, 760, 700 cm⁻¹. Anal. Calcd. for C₁₆H₁₃F₃: C, 73.27; H, 5.00. Found: C, 73.02; H, 4.87.

17b: oil; ¹H NMR (CDCl₃) δ 7.39–6.92 (m, 9H), 1.81 (q, J = 2.2 Hz, 3H); ¹⁹F NMR (CDCl₃) δ –56.30 (s, 3F); MS, *m/z* (relative intensity) 342 (M^+ + 2, 65), 340 (M^+ , 66), 246 (51), 221 (8), 192 (100), 133 (8), 115 (11); IR (neat) 3146, 2951, 2927, 1711, 1349, 1249, 1153, 1127, 1035, 749, 695 cm⁻¹. Anal. Calcd. for C₁₆H₁₂BrF₃: C, 56.33; H, 3.55. Found: C, 56.04; H, 3.63.

17c: oil; ¹H NMR (CDCl₃) δ 7.26–6.84 (m, 9H), 3.78 (s, 3H), 1.84 (q, J = 2.2 Hz, 3H); ¹⁹F NMR (CDCl₃) δ –56.89 (s, 3F); MS, m/z (relative intensity) 292 (M^+ , 100), 261 (4), 234 (3), 208 (22), 178 (8), 165 (13), 145 (8), 115 (17); IR (neat) 3038, 2956, 2924, 2871, 1513, 1463, 1249, 1161, 1117, 1040, 757, 697 cm⁻¹. Anal. Calcd. for C₁₇H₁₅F₃O: C, 69.85; H, 5.17. Found: C, 69.59; H, 5.05.

17d: mp 61–62 °C; ¹H NMR (CDCl₃) δ 7.34–7.23 (m, 9H), 2.40 (s, 3H), 1.88 (q, J = 2.2 Hz, 3H); ¹⁹F NMR (CDCl₃) δ –56.39 (s, 3F); MS, m/z (relative intensity) 276 (M^+ , 100), 261 (59), 241 (52), 202 (59), 192 (89), 165 (19), 115 (18), 77 (10); IR (KBr) 3023, 2957, 1331, 1260, 1207, 1162, 1110, 1026, 801, 763, 699 cm⁻¹. Anal. Calcd. for C₁₇H₁₅F₃: C, 73.90; H, 5.47. Found: C, 73.61; H, 5.35.

17e: mp 110–112 °C; ¹H NMR (CDCl₃) δ 8.36–8.28 (m, 4H), 7.58–7.21 (m, 5H), 1.91 (q, J = 2.1 Hz, 3H); ¹⁹F NMR (CDCl₃) δ –55.97 (s, 3F); MS, m/z (relative intensity) 307 (M^+ , 100), 246 (37), 192 (49), 165 (16), 151 (5), 115 (6), 77 (12), 51 (11); IR (KBr) 3080, 2994, 2359, 1653, 1520, 1350, 1264, 1216, 1162, 1106, 1013, 849, 765, 698 cm⁻¹. Anal. Calcd. for C₁₆H₁₂F₃NO₂: C, 62.54; H, 3.94. Found: C, 62.29; H, 3.85.

17f: oil; ¹H NMR (CDCl₃) δ 7.33–7.15 (m, 9H), 3.40 (s, 3H), 1.86 (q, J = 2.0 Hz, 3H); ¹⁹F NMR (CDCl₃) δ –56.27 (s, 3F); MS, m/z (relative intensity) 292 (M^+ , 100), 277 (21), 261 (9), 249 (4), 223 (10), 208 (20), 183 (9), 165 (20), 145 (5), 115 (12); IR (neat) 3022, 2958, 1600, 1580, 1487, 1334, 1248, 1155, 1117, 1031, 960, 732, 699 cm⁻¹. Anal. Calcd. for C₁₇H₁₅F₃O: C, 69.85; H, 5.17. Found: C, 69.59; H, 5.06.

17g: mp 50–52 °C; ¹H NMR (CDCl₃) δ 7.33–7.15 (m, 9H), 2.40 (s, 3H), 1.85 (q, J = 2.1 Hz, 3H); ¹⁹F NMR

(CDCl₃) δ -56.27 (s, 3F); MS, *m/z* (relative intensity) 276 (*M*⁺, 100), 261 (49), 241 (24), 192 (28), 183 (15), 165 (2), 129 (10), 115 (4), 77 (3), 51 (9); IR (KBr) 3056, 2923, 1638, 1605, 1488, 1444, 1327, 1265, 1222, 1172, 1113, 1075, 815, 760, 699 cm⁻¹. Anal. Calcd. for C₁₇H₁₅F₃: C, 73.90; H, 5.47. Found: C, 73.69; H, 5.34.

18a: oil; ¹H NMR (CDCl₃) δ 7.42–7.26 (m, 10H); ¹⁹F NMR (CDCl₃) δ –64.87 (d, J = 9.9 Hz, 3F), –129.29 (q, J = 9.8 Hz, 1F); MS, m/z (relative intensity) 266 (M^+ , 100), 245 (15), 196 (85), 177 (17), 165 (29), 98 (15), 51 (14); IR (CCl₄) 3062, 2959, 2927, 1731, 1549, 1344, 1282, 1195, 1143, 1100, 1010, 699 cm⁻¹. Anal. Calcd. for C₁₅H₁₀F₄: C, 67.67; H, 3.79. Found: C, 67.34; H, 3.75.

18b: oil; ¹H NMR (CDCl₃) δ 7.55–7.00 (m, 9H); ¹⁹F NMR (CDCl₃) δ –64.95 (d, J = 9.8 Hz, 3F), –128.16 (q, J = 9.9 Hz, 1F); MS, m/z (relative intensity) 346 (M^+ + 2, 31), 344 (M^+ , 32), 245 (20), 196 (100); IR (CCl₄) 3082, 3033, 2958, 2927, 1585, 1550, 1490, 1338, 1280, 1206, 1195, 1145, 1101, 1075, 1012, 700 cm⁻¹. Anal. Calcd. for C₁₅H₉BrF₄: C, 52.20; H, 2.63. Found: C, 52.01; H, 2.59.

18c: oil; ¹H NMR (CDCl₃) δ 7.68–7.12 (m, 9H); ¹⁹F NMR (CDCl₃) δ –64.92 (d, J = 9.9 Hz, 3F), –128.35 (q, J = 9.9 Hz, 1F); MS, m/z (relative intensity) 302 (M^+ + 2, 33), 300 (M^+ , 100), 265 (17), 245 (13), 196 (79). Anal. Calcd. for C₁₅H₉ClF₄: C, 59.92; H, 3.02. Found: C, 59.53; H, 3.05.

18d: oil; ¹H NMR (CDCl₃) δ 7.43–6.94 (m, 9H); ¹⁹F NMR (CDCl₃) δ –64.83 (d, J = 10.0 Hz, 3F), –112.18 (s, 1F), –129.35 (q, J = 9.9 Hz, 1F); MS, m/z (relative intensity) 284 (M^+ , 100), 214 (46), 183 (34), 107 (11). Anal. Calcd. for C₁₅H₉F₅: C, 63.34; H, 3.19. Found: C, 63.03; H, 3.14.

18e: oil; ¹H NMR (CDCl₃) δ 7.42–6.81 (m, 9H), 3.80 (s, 3H); ¹⁹F NMR (CDCl₃) δ –64.60 (d, J = 10.1 Hz, 3F), –131.01 (q, J = 10.0 Hz, 1F); MS, m/z (relative intensity) 296 (M^+ , 100), 277 (4), 226 (7), 212 (10), 195 (35), 183 (31), 152 (6); IR (CCl₄) 3061, 3004, 2957, 2930, 2855, 1659, 1606, 1564, 1512, 1463, 1342, 1287, 1254, 1194, 1140, 1098, 1038, 700 cm⁻¹. Anal. Calcd. for C₁₆H₁₂F₄O: C, 64.86; H, 4.08. Found: C, 64.73; H, 4.02.

18f: oil; ¹H NMR (CDCl₃) δ 7.42–7.00 (m, 9H), 2.35 (s, 3H); ¹⁹F NMR (CDCl₃) δ –64.80 (d, J = 10.0 Hz, 3F), –130.01 (q, J = 9.9 Hz, 1F); MS, m/z (relative intensity) 280 (M^+ , 100), 265 (24), 245 (12), 211 (26), 196 (86), 179 (27), 133 (5), 128 (6), 91 (11); IR (CCl₄) 3063, 3028, 2960, 2928, 2873, 2857, 1730, 1579, 1549, 1463, 1379, 1340, 1284, 1206, 1140, 1121, 1073, 1006, 977, 702 cm⁻¹. Anal. Calcd. for C₁₆H₁₂F₄: C, 68.57; H, 4.32. Found: C, 68.70; H, 4.24.

18g: oil; ¹H NMR (CDCl₃) δ 8.31–7.26 (m, 9H); ¹⁹F NMR (CDCl₃) δ –64.90 (d, J = 9.8 Hz, 3F, one isomer), –65.10 (q, J = 9.9 Hz, 3F, other isomer), –125.30 (q, J = 9.7 Hz, 1F, one isomer), –126.30 (q, J = 9.8 Hz, 1F, other isomer); MS, m/z (relative intensity) 311 (M^+ , 100), 264 (18), 245 (6), 225 (5), 214 (5), 196 (33), 183 (7); IR (CCl₄) 3060, 3028, 2958, 2926, 2855, 1728, 1665, 1603, 1527, 1494, 1447, 1341, 1284, 1261, 1196, 1149, 1103,

1101, 938, 701 cm⁻¹. Anal. Calcd. for $C_{15}H_9F_4NO_2$: C, 57.89; H, 2.91. Found: C, 57.60; H, 2.97.

18h: oil; ¹H NMR (CDCl₃) δ 7.42–6.80 (m, 9H), 3.77 (s, 3H); ¹⁹F NMR (CDCl₃) δ –64.92 (d, J = 9.6 Hz, 3F), –128.41 (q, J = 9.5 Hz, 1F); MS, m/z (relative intensity) 296 (M^+ , 100), 277 (9), 265 (11), 245 (9), 227 (23), 212 (37), 196 (47), 183 (62), 165 (6), 152 (8); IR (CCl₄) 3086, 3064, 2957, 2854, 2837, 1580, 1551, 1488, 1464, 1447, 1431, 1394, 1339, 1289, 1201, 1196, 1143, 1101, 1054, 1008, 975, 698 cm⁻¹. Anal. Calcd. for C₁₆H₁₂F₄O: C, 64.86; H, 4.08. Found: C, 64.58; H, 4.00.

18i: oil; ¹H NMR (CDCl₃) δ 7.38–7.10 (m, 9H), 2.32 (s, 3H); ¹⁹F NMR (CDCl₃) δ –64.90 (d, J = 10.0 Hz, 3F), –129.02 (q, J = 9.9 Hz, 1F); MS, m/z (relative intensity) 280 (M^+ , 100), 265 (31), 245 (10), 196 (45), 179 (10); IR (CCl₄) 3061, 3028, 2958, 2925, 2856, 1729, 1583, 1549, 1493, 1445, 1338, 1310, 1288, 1201, 1143, 1103, 1002, 978, 880, 663 cm⁻¹. Anal. Calcd. for C₁₆H₁₂F₄: C, 68.57; H, 4.32. Found: C, 68.76; H, 4.27.

18j: oil; ¹H NMR (CDCl₃) δ 7.37–7.03 (m, 9H), 2.28 (s, 3H); ¹⁹F NMR (CDCl₃) δ –65.20 (d, J = 10.2 Hz, 3F), –123.70 (q, J = 10.2 Hz, 1F); MS, m/z (relative intensity) 280 (M^+ , 52), 196 (413), 179 (100), 133 (7); IR (CCl₄) 3065, 3024, 2927, 2857, 1555, 1446, 1439, 1340, 1292, 1267, 1145, 1123, 1094, 695 cm⁻¹. Anal. Calcd. for C₁₆H₁₂F₄: C, 68.57; H, 4.32. Found: C, 68.33; H, 4.21.

19: oil; ¹H NMR (CDCl₃) δ 7.51–6.86 (m, 8H); ¹⁹F NMR (CDCl₃) δ –64.14 (d, J = 9.8 Hz, 3F), –124.44 (q, J = 9.7 Hz, 1F); MS, m/z (relative intensity) 272 (M^+ , 100), 202 (43), 171 (25). Anal. Calcd. for C₁₃H₈F₄S: C, 57.35; H, 2.96. Found: C, 57.11; H, 2.87.

20: oil; ¹H NMR (CDCl₃) δ 8.62–7.07 (m, 8H); ¹⁹F NMR (CDCl₃) δ –65.42 (d, J = 9.1 Hz, 3F), –124.92 (q, J = 9.1 Hz, 1F); MS, m/z (relative intensity) 268 (M^+ , 51), 267 (100), 217 (11), 199 (41). Anal. Calcd. for C₁₃H₈F₄N₂: C, 58.21; H, 3.01. Found: C, 57.97; H, 3.07.

21a: mp 72–73 °C; ¹H NMR (CDCl₃) δ 7.34–6.85 (m, 15H); ¹⁹F NMR (CDCl₃) δ –56.27 (s, 3F); MS, *m/z* (relative intensity) 324 (*M*⁺, 100), 283 (18), 255 (38), 178 (11), 126 (13), 113 (7), 77 (7); IR (KBr) 3081, 3022, 1621, 1491, 1444, 1326, 1222, 1168, 1100, 1034, 757, 695 cm⁻¹. Anal. Calcd. for C₂₁H₁₅F₃: C, 77.76; H, 4.66. Found: C, 77.69; H, 4.62.

21b: mp 78–80 °C; ¹H NMR (CDCl₃) δ 7.36–6.72 (m, 14H); ¹⁹F NMR (CDCl₃) δ –56.22 (s, 3F, Z isomer), –56.31 (s, 3F, *E* isomer), –113.44 (m, 1F, *Z* isomer); MS, *m/z* (relative intensity) 342 (*M*⁺, 100), 301 (10), 273 (33), 253 (18), 151 (10), 135 (10). Anal. Calcd. for C₂₁H₁₄F₄: C, 73.68; H, 4.09. Found: C, 73.51; H, 4.03.

21c: mp 89–90 °C; ¹H NMR (CDCl₃) δ 7.32–6.93 (m, 14H); ¹⁹F NMR (CDCl₃) δ –56.22 (s, 3F, *Z* isomer), –56.41 (s, 3F, *E* isomer); MS, *m*/*z* (relative intensity) 360 (*M*⁺ + 2, 33), 358 (*M*⁺, 100), 289 (12), 283 (28), 254 (60), 151 (12), 141 (15), 126 (30). Anal. Calcd. for C₂₁H₁₄F₃Cl: C, 70.39; H, 3.91. Found: C, 70.14; H, 3.83.

21d: mp 96–97 °C; ¹H NMR (CDCl₃) δ 7.55–6.86 (m, 14H); ¹⁹F NMR (CDCl₃) δ –56.22 (s, 3F, Z isomer), –56.81

(s, 3F, *E* isomer); MS, *m*/*z* (relative intensity) 404 (M^+ + 2, 74), 402 (M^+ , 76), 323 (6), 283 (46), 254 (100), 227 (11), 141 (30), 126 (39); IR (KBr) 3057, 1616, 1486, 1444, 1393, 1326, 1268, 1224, 1171, 1115, 1013, 811, 758, 698 cm⁻¹. Anal. Calcd. for C₂₁H₁₄BrF₃: C, 62.55; H, 3.50. Found: C, 62.37; H, 3.56.

21e: oil; ¹H NMR (CDCl₃) δ 7.53–6.51 (m, 14H), 3.83 (s, 3H, *Z* isomer), 3.65 (s, 3H, *E* isomer); ¹⁹F NMR (CDCl₃) δ –55.91 (s, 3F, *Z* isomer), -56.20 (s, 3F, *E* isomer); MS, *m*/*z* (relative intensity) 354 (*M*⁺, 100), 289 (19), 270 (14), 239 (12), 195 (9), 126 (8), 119 (6); IR (neat) 3055, 2959, 2861, 1656, 1484, 1390, 1321, 1265, 1142, 1105, 1029, 755, 696 cm⁻¹. Anal. Calcd. for C₂₂H₁₇F₃O: C, 74.57; H, 4.84. Found: C, 74.36; H, 4.77.

21f: oil; ¹H NMR (CDCl₃) δ 7.60–7.02 (m, 14H); ¹⁹F NMR (CDCl₃) δ –56.29 (s, 3F, Z isomer), –56.64 (s, 3F, E isomer), –63.11 (s, 3F, Z isomer), –63.28 (s, 3F, E isomer); MS, *m*/*z* (relative intensity) 392 (*M*⁺, 100), 351 (12), 323 (31), 283 (39), 253 (22). Anal. Calcd. for C₂₂H₁₄F₆: C, 67.35; H, 3.60. Found: C, 67.26; H, 3.55.

21g: oil; ¹H NMR (CDCl₃) δ 8.29–8.20 (m, 2H), 7.93– 6.83 (m, 12H); ¹⁹F NMR (CDCl₃) δ –56.33 (s, 3F, Z isomer), –56.93 (s, 3F, E isomer); MS, *m/z* (relative intensity) 369 (*M*⁺, 100), 300 (16), 253 (54), 178 (7), 126 (24), 113 (11); IR (neat) 3060, 1598, 1521, 1444, 1348, 1280, 1225, 1172, 1118, 847, 757, 701 cm⁻¹. Anal. Calcd. for C₂₁H₁₄F₃NO₂: C, 68.29; H, 3.82. Found: C, 68.11; H, 3.77.

21h: mp 53–55 °C; ¹H NMR (CDCl₃) δ 7.33–6.95 (m, 14H), 2.35 (s, 3H, *Z* isomer), 2.09 (s, 3H, *E* isomer); ¹⁹F NMR (CDCl₃) δ –56.17 (s, 3F, *E* isomer), –56.28 (s, 3F, *Z* isomer); MS, *m/z* (relative intensity) 338 (*M*⁺, 100), 297 (10), 283 (19), 254 (28), 126 (10). Anal. Calcd. for C₂₂H₁₇F₃: C, 78.09; H, 5.06. Found: C, 77.80; H, 4.99.

21i: mp 81–82 °C; ¹H NMR (CDCl₃) δ 7.34–6.85 (m, 14H), 3.80 (s, 3H, *Z* isomer), 3.54 (s, 3H, *E* isomer); ¹⁹F NMR (CDCl₃) δ –56.23 (s, 3F, *E* isomer), -56.42 (s, 3F, *Z* isomer); MS, *m*/*z* (relative intensity) 354 (*M*⁺, 100), 285 (19), 270 (21), 253 (21), 239 (15). Anal. Calcd. for C₂₂H₁₇F₃O: C, 74.57; H, 4.84. Found: C, 74.39; H, 4.79.

21j: oil; ¹H NMR (CDCl₃) δ 7.57–7.03 (m, 14H); ¹⁹F NMR (CDCl₃) δ –56.26 (s, 3F, Z isomer), –56.65 (s, 3F, E isomer), –63.12 (s, 3F, Z isomer), –63.46 (s, 3F, E isomer); MS, *m*/*z* (relative intensity) 392 (*M*⁺, 100), 351 (10), 323 (31), 283 (31), 253 (10). Anal. Calcd. for C₂₂H₁₄F₆: C, 67.35; H, 3.60. Found: C, 67.17; H, 3.52.

3.6. General procedure for the preparation of 22, 25, 26, 29 and 30

To a toluene (5 ml) solution of acyl chloride (1.12 mmol)and **1**, **2a** or **4** (0.75 mmol) was added Pd(PPh₃)₂Cl₂ (10 mol%) and CuCN (10 mol%), and the reaction mixture was heated at 50–80 °C for 6 h under argon atmosphere. After the reaction mixture was quenched with water and then washed with 5% KF solution and brine, aqueous solution was extracted with ether twice. The ether solution was dried and chromatographed on SiO_2 column. Elution with a mixture of hexane and ethyl acetate (20:1) provided **22**, **25**, **26**, **29** or **30**.

22a: mp 65–66 °C; ¹H NMR (CDCl₃) δ 7.41–7.18 (m, 10H), 2.03 (s, 3H); ¹⁹F NMR (CDCl₃) δ –55.42 (s, 3F); MS, *m/z* (relative intensity) 290 (*M*⁺, 100), 255 (27), 213 (36), 178 (36), 151 (16), 127 (24), 105 (40), 77 (16); IR (KBr) 3059, 2926, 1704, 1619, 1492, 1357, 1322, 1261, 1216, 1145, 1078, 1042, 952, 759, 699 cm⁻¹. Anal. Calcd. for C₁₇H₁₃F₃O: C, 70.34; H, 4.51. Found: C, 70.18; H, 4.60.

22b: oil; ¹H NMR (CDCl₃) δ 7.90–7.81 (m, 2H), 7.54–7.09 (m, 13H); ¹⁹F NMR (CDCl₃) δ –54.78 (s, 3F); MS, *m/z* (relative intensity) 352 (*M*⁺, 60), 275 (13), 227 (5), 178 (6), 127 (5), 105 (100), 77 (86); IR (neat) 3083, 3060, 3030, 2926, 1670, 1621, 1597, 1492, 1447, 1326, 1249, 1193, 1147, 1081, 943, 834, 758, 695, 610 cm⁻¹. Anal. Calcd. for C₂₂H₁₅F₃O: C, 74.99; H, 4.29. Found: C, 74.83; H, 4.26.

22c: oil; ¹H NMR (CDCl₃) δ 8.08–6.96 (m, 14H), 2.36 (s, 3H); ¹⁹F NMR (CDCl₃) δ –55.04 (s, 3F); MS, *m/z* (relative intensity) 366 (*M*⁺, 16), 346 (17), 297 (53), 119 (81), 91 (100), 65 (39). Anal. Calcd. for C₂₃H₁₇F₃O: C, 75.40; H, 4.68. Found: C, 75.26; H, 4.60.

22d: mp 149–151 °C; ¹H NMR (CDCl₃) δ 7.81–7.10 (m, 14H), 2.34 (s, 3H); ¹⁹F NMR (CDCl₃) δ –54.75 (s, 3F); MS, *m*/*z* (relative intensity) 366 (*M*⁺, 97), 289 (13), 119 (100), 91 (36). Anal. Calcd. for C₂₃H₁₇F₃O: C, 75.40; H, 4.68. Found: C, 75.19; H, 4.56.

22e: oil; ¹H NMR (CDCl₃) δ 7.91–6.78 (m, 14H), 3.82 (s, 3H); ¹⁹F NMR (CDCl₃) δ –54.78 (s, 3F); MS, *m/z* (relative intensity) 382 (*M*⁺, 41), 135 (100), 107 (10), 92 (19), 77 (31). Anal. Calcd. for C₂₃H₁₇F₃O₂: C, 72.24; H, 4.48. Found: C, 72.15; H, 4.45.

22f: oil; ¹H NMR (CDCl₃) δ 8.61–7.07 (m, 14H); ¹⁹F NMR (CDCl₃) δ –54.93 (s, 3F); MS, *m/z* (relative intensity) 397 (*M*⁺, 100), 320 (25), 150 (41), 104 (20), 76 (14). Anal. Calcd. for C₂₂H₁₄F₃NO₃: C, 66.50; H, 3.55. Found: C, 66.32; H, 3.47.

22g: oil; ¹H NMR (CDCl₃) δ 7.66–7.09 (m, 14H), 2.44 (s, 3H); ¹⁹F NMR (CDCl₃) δ –54.70 (s, 3F); MS, *m/z* (relative intensity) 366 (*M*⁺, 100), 289 (17), 119 (90), 91 (42). Anal. Calcd. for C₂₃H₁₇F₃O: C, 75.40; H, 4.68. Found: C, 75.28; H, 4.75.

22h: mp 76–78 °C; ¹H NMR (CDCl₃) δ 7.93–7.10 (m, 14H); ¹⁹F NMR (CDCl₃) δ –54.81 (s, 3F); MS, *m/z* (relative intensity) 432 (*M*⁺ + 2, 100), 430 (*M*⁺, 99), 355 (21), 353 (21), 275 (14), 227 (11), 185 (72), 183 (72), 155 (46), 105 (13), 76 (19). Anal. Calcd. for C₂₂H₁₄BrF₃O: C, 61.27; H, 3.27. Found: C, 61.44; H, 3.22.

22i: oil; ¹H NMR (CDCl₃) δ 7.34–7.19 (m, 10H), 3.96 (q, J = 7.1, 2H), 0.89 (t, J = 7.1, 3H); ¹⁹F NMR (CDCl₃) δ –56.04 (s, 3F); MS, *m*/*z* (relative intensity) 320 (M^+ , 97), 275 (72), 255 (35), 247 (100), 227 (58), 204 (24), 178 (66), 165 (23), 127 (23), 105 (43), 77 (20), 51 (12). Anal. Calcd. for C₁₈H₁₅F₃O₂: C, 67.49; H, 4.72. Found: C, 67.35; H, 4.69.

22j: oil; ¹H NMR (CDCl₃) δ 7.49–7.16 (m, 12H), 6.39 (m, 1H); ¹⁹F NMR (CDCl₃) δ –54.93 (s, 3F); MS, *m*/*z* (relative

intensity) 342 (M^+ , 78), 274 (26), 265 (26), 245 (28), 215 (22), 202 (15), 170 (22), 151 (36), 144 (21), 95 (100). Anal. Calcd. for C₂₀H₁₃F₃O₂: C, 70.17; H, 3.83. Found: C, 70.15; H, 3.77.

22k: mp 118–120 °C; ¹H NMR (CDCl₃) δ 8.40–6.99 (m, 17H); ¹⁹F NMR (CDCl₃) δ –54.65 (s, 3F); MS, *m/z* (relative intensity) 402 (*M*⁺, 100), 155 (60), 127 (69), 77 (12). Anal. Calcd. for C₂₆H₁₇F₃O: C, 77.60; H, 4.26. Found: C, 77.75; H, 4.21.

25: oil; ¹H NMR (CDCl₃) δ 7.46–7.13 (m, 5H), 2.46 (s, 3H), 2.12 (q, J = 2.1, 3H); ¹⁹F NMR (CDCl₃) δ –57.36 (s, 3F); MS, m/z (relative intensity) 228 (M^+ , 100), 213 (45), 193 (10), 165 (14), 123 (37), 115 (22), 77 (9); IR (neat) 3059, 2958, 2856, 1709, 1642, 1492, 1444, 1319, 1250, 1219, 1162, 1121, 1036, 765, 700 cm⁻¹. Anal. Calcd. for C_{12H11}F₃O: C, 63.15; H, 4.86. Found: C, 63.03; H, 4.84.

26: oil; ¹H NMR (CDCl₃) δ 8.13–8.06 (m, 2H), 7.74–7.11 (m, 8H), 2.00 (q, J = 2.0, 3H); ¹⁹F NMR (CDCl₃) δ –54.73 (s, 3F); MS, m/z (relative intensity) 290 (M^+ , 41), 275 (11), 249 (7), 221 (12), 193 (4), 165 (6), 105 (100), 77 (70), 51 (20); IR (neat) 3099, 3061, 2995, 1673, 1596, 1450, 1325, 1239, 1171, 1127, 1102, 996, 764, 694 cm⁻¹. Anal. Calcd. for C₁₇H₁₃F₃O: C, 70.34; H, 4.51. Found: C, 70.29; H, 4.44.

29: oil; ¹H NMR (CDCl₃) δ 7.34–7.05 (m, 10H), 2.28 (s, 3H, *Z* isomer), 1.79 (s, 3H, *E* isomer); ¹⁹F NMR (CDCl₃) δ –57.42 (s, 3F, *E* isomer), –59.93 (s, 3H, *Z* isomer); MS, *m/z* (relative intensity) 290 (*M*⁺, 100), 247 (32), 227 (83), 178 (40), 151 (14), 126 (7), 77 (17), 51 (25); IR (neat) 3061, 2927, 1710, 1492, 1445, 1324, 1256, 1216, 1177, 1125, 759, 697 cm⁻¹. Anal. Calcd. for C₁₇H₁₃F₃O: C, 70.34; H, 4.51. Found: C, 70.22; H, 4.55.

30: oil; ¹H NMR (CDCl₃) δ 8.14–7.05 (m, 15H); ¹⁹F NMR (CDCl₃) δ –56.85 (s, 3F, *E* isomer), –59.73 (s, 3F, *Z* isomer); MS, *m/z* (relative intensity) 352 (*M*⁺, 17), 283 (2), 227 (2), 178 (3), 105 (100), 77 (33); IR (neat) 3059, 2923, 1671, 1596, 1447, 1326, 1248, 1193, 1146, 1080, 770, 693 cm⁻¹. Anal. Calcd. for C₂₂H₁₅F₃O: C, 74.99; H, 4.29. Found: C, 74.75; H, 4.22.

3.7. General procedure for the preparation of 23,27 and 31

To a ether (5 ml) solution of **22**, **26** or **30** (1.28 mmol) was slowly added LiAlH₄ (1.92 mmol) dissolved in ether and then the reaction mixture was heated to reflux for 3 h. After the reaction mixture was quenched with 10% HCl solution and then washed with water, aqueous solution was extracted with ether twice. The ether solution was dried and chromatographed on SiO₂ column. Elution with a mixture of hexane and ethyl acetate(4:1) provided **23**, **27** and **31**.

23a: oil; ¹H NMR (CDCl₃) δ 7.53–7.02 (m, 10H), 4.58 (m, 1H), 1.87 (d, J = 6.1 Hz, 1H), 1.48 (d, J = 7.5 Hz, 3H); ¹⁹F NMR (CDCl₃) δ –52.64 (s, 3F); MS, *m/z* (relative intensity) 292 (M^+ , 44), 259 (15), 209 (26), 178 (18), 167 (100), 127 (59), 77 (22), 51 (17); IR (neat) 3395, 3059, 3028, 2963, 2932, 1622, 1492, 1445, 1318, 1260,

1130, 1077, 1018, 797, 759, 701 cm⁻¹. Anal. Calcd. for $C_{17}H_{15}F_3O$: C, 69.85; H, 5.17. Found: C, 69.69; H, 5.12.

23b: oil; ¹H NMR (CDCl₃) δ 7.44–7.19 (m, 15H), 5.71 (d, J = 8.8 Hz, 1H), 2.51 (d, J = 8.7 Hz, 1H); ¹⁹F NMR (CDCl₃) δ –51.74 (s, 3F); MS, m/z (relative intensity) 354 (M^+ , 33), 336 (25), 285 (15), 267 (50), 207 (19), 178 (21), 151 (14), 105 (100), 77 (31); IR (neat) 3437, 3059, 3028, 2926, 2856, 1724, 1600, 1493, 1447, 1338, 1256, 1190, 1121, 1077, 1034, 926, 861, 767, 698 cm⁻¹. Anal. Calcd. for C₂₂H₁₇F₃O: C, 74.57; H, 4.84. Found: C, 74.42; H, 4.78.

23c: oil; ¹H NMR (CDCl₃) δ 7.35–7.13 (m, 14H), 5.63 (d, J = 8.8 Hz, 1H), 2.48 (d, J = 8.6 Hz, 1H), 2.36 (s, 3H); ¹⁹F NMR (CDCl₃) δ –51.61 (s, 3F); MS, *m/z* (relative intensity) 368 (M^+ , 21), 350 (19), 281 (50), 207 (10), 178 (16), 165 (14), 119 (100), 91 (40), 77 (23). Anal. Calcd. for C₂₃H₁₉F₃O: C, 74.99; H, 5.20. Found: C, 74.70; H, 5.11.

23d: oil; ¹H NMR (CDCl₃) δ 7.88–6.95 (m, 14H), 5.59 (d, J = 8.5 Hz, 1H), 3.81 (s, 3H), 2.43 (d, J = 8.4 Hz, 1H); ¹⁹F NMR (CDCl₃) δ –51.57 (s, 3F); MS, *m/z* (relative intensity) 384 (M^+ , 47), 366 (29), 315 (16), 297 (55), 207 (14), 178 (16), 165 (14), 135 (100), 109 (17), 94 (17), 77 (40). Anal. Calcd. for C₂₃H₁₉F₃O₂: C, 71.97; H, 4.98. Found: C, 71.86; H, 4.94.

23e: oil; ¹H NMR (CDCl₃) δ 7.90–7.26 (m, 17H), 5.83 (d, J = 8.3 Hz, 1H), 2.61 (d, J = 8.2 Hz, 1H); ¹⁹F NMR (CDCl₃) δ –51.82 (s, 3F); MS, m/z (relative intensity) 404 (M^+ , 33), 386 (20), 317 (35), 275 (18), 257 (14), 229 (12), 207 (13), 165 (19), 155 (57), 127 (100), 77 (28). Anal. Calcd. for C₂₆H₁₉F₃O: C, 77.21; H, 4.74. Found: C, 77.01; H, 4.77.

27: oil; ¹H NMR (CDCl₃) δ 7.48–7.15 (m, 10H), 5.92 (d, J = 7.0 Hz, 1H), 2.41 (d, J = 6.8 Hz, 1H), 2.10 (m, 3H); ¹⁹F NMR (CDCl₃) δ –54.26 (s, 3F); MS, m/z (relative intensity) 292 (M^+ , 38), 277 (10), 259 (8), 205 (45), 179 (20), 145 (14), 105 (100), 77 (76); IR (neat) 3408, 3060, 3029, 2921, 1648, 1601, 1493, 1450, 1377, 1337, 1249, 1173, 1121, 1027, 965, 917, 764, 699 cm⁻¹. Anal. Calcd. for C₁₇H₁₅F₃O: C, 69.85; H, 5.17. Found: C, 69.70; H, 5.13.

31: oil; ¹H NMR (CDCl₃) δ 7.58–6.74 (m, 15H), 5.00 (d, J = 8.8 Hz, 1H), 3.95 (d, J = 8.8 Hz, 1H); ¹⁹F NMR (CDCl₃) δ –57.11 (s, 3F); MS, m/z (relative intensity) 354 (M^+ , 15), 248 (76), 227 (16), 179 (33), 105 (100), 77 (71); IR (neat) 3418, 3029, 2923, 1663, 1601, 1493, 1453, 1326, 1170, 1112, 1040, 1034, 926, 861, 765, 700 cm⁻¹. Anal. Calcd. for C₂₂H₁₇F₃O: C, 74.57; H, 4.84. Found: C, 74.35; H, 4.72.

3.8. General procedure for the preparation of **24**, **28** and **32**

To a methylene chloride (5 ml) solution of **23**, **27** or **31** (0.28 mmol) was slowly added $AlCl_3$ (0.30 mmol) via solid addition tube at -78 °C and then the reaction mixture was slowly warmed to room temperature. After the reaction

mixture was quenched with 10% HCl solution, aqueous solution was extracted with methylene chloride twice. The methylene chloride solution was dried and chromatographed on SiO₂ column. Elution with a mixture of hexane and ethyl acetate(20:1) provided **24**, **28** and **32**.

24a: mp 75–77 °C; ¹H NMR (CDCl₃) δ 7.41–7.10 (m, 9H), 4.90 (q, J = 7.3 Hz, 1H), 1.80 (d, J = 7.4 Hz, 1H), 1.48 (d, J = 7.5 Hz, 3H); ¹⁹F NMR (CDCl₃) δ –52.50 (s, 3F); MS, *m*/*z* (relative intensity) 274 (M^+ , 39), 233 (41), 205 (100), 177 (24), 165 (10), 151 (5), 127 (14), 101 (20), 91 (18), 77 (19); IR (KBr) 3058, 2929, 1598, 1445, 1320, 1194, 1137, 1034, 732, 700 cm⁻¹. Anal. Calcd. for C₁₇H₁₃F₃: C, 74.44; H, 4.78. Found: C, 74.27; H, 4.69.

24b: mp 69–70 °C; ¹H NMR (CDCl₃) δ 7.41–6.91 (m, 14H), 4.87 (s, 1H); ¹⁹F NMR (CDCl₃) δ –55.07 (s, 3F); MS, *m/z* (relative intensity) 336 (*M*⁺, 98), 267 (100), 189 (12), 165 (10); IR (KBr) 3063, 3027, 2959, 2924, 1600, 1494, 1453, 1359, 1264, 1144, 1110, 1072, 750, 699 cm⁻¹. Anal. Calcd. for C₂₂H₁₅F₃: C, 78.56; H, 4.50. Found: C, 78.45; H, 4.45.

24c: mp 74–76 °C; ¹H NMR (CDCl₃) δ 7.48–6.99 (m, 13H), 4.95 (s, 1H), 2.33 (s, 3H); ¹⁹F NMR (CDCl₃) δ –55.06 (s, 3F); MS, *m/z* (relative intensity) 350 (*M*⁺, 100), 281 (88), 265 (15), 239 (4), 202 (4). Anal. Calcd. for C₂₃H₁₇F₃: C, 78.84; H, 4.89. Found: C, 78.59; H, 4.79.

24d: mp 79–81 °C; ¹H NMR (CDCl₃) δ 7.48–6.79 (m, 13H), 4.91 (s, 1H), 3.80 (s, 3H); ¹⁹F NMR (CDCl₃) δ –55.10 (s, 3F); MS, *m/z* (relative intensity) 366 (*M*⁺, 96), 297 (100), 282 (5), 252 (13), 239 (5). Anal. Calcd. for C₂₃H₁₇F₃O: C, 75.40; H, 4.68. Found: C, 75.31; H, 4.65.

24e: mp 88–90 °C; ¹H NMR (CDCl₃) δ 7.93–7.03 (m, 16H), 5.12 (s, 1H); ¹⁹F NMR (CDCl₃) δ –55.19 (s, 3F); MS, *m*/*z* (relative intensity) 386 (*M*⁺, 94), 317 (100), 189 (11), 165 (9). Anal. Calcd. for C₂₆H₁₇F₃: C, 80.81; H, 4.43. Found: C, 80.52; H, 4.51.

28: mp 75–77 °C; ¹H NMR (CDCl₃) δ 7.50–6.98 (m, 9H), 4.77 (s, 1H), 2.41 (m, 3H); ¹⁹F NMR (CDCl₃) δ –56.58 (s, 3F); MS, *m/z* (relative intensity) 274 (*M*⁺, 100), 259 (19), 233 (8), 205 (80), 189 (12), 127 (12), 101 (15), 77 (13); IR (KBr) 3065, 2957, 1786, 1632, 1494, 1453, 1358, 1258, 1158, 1111, 1015, 758, 697 cm⁻¹. Anal. Calcd. for C₁₇H₁₃F₃: C, 74.44; H, 4.78. Found: C, 74.72; H, 4.71.

32: mp 67–68 °C; ¹H NMR (CDCl₃) δ 7.55–6.59 (m, 14H), 4.96 (s, 1H); ¹⁹F NMR (CDCl₃) δ –59.09 (s, 3F); MS, *m*/*z* (relative intensity) 336 (*M*⁺, 100), 267 (62), 265 (32), 252 (17), 132 (20); IR (KBr) 3060, 3025, 2962, 1698, 1599, 1493, 1452, 1260, 1096, 1027, 800, 760, 699 cm⁻¹. Anal. Calcd. for C₂₂H₁₅F₃: C, 78.56; H, 4.50. Found: C, 78.21; H, 4.56.

Acknowledgements

This work was supported by grant No. (R05-2001-000-00211-0) from the Basic Research Program of the Korea Science and Engineering Foundation.

References

- J.T. Welch, S. Eswarakrishnan, Fluorine in Bioorganic Chemistry, Wiley, New York, 1991.
- [2] R.E. Bank, B.E. Smart, J.C. Tatlow, Organofluorine Chemistry, Principle and Commercial Applications, Plenum Press, New York, 1994.
- [3] G. Nemeth, R. Kapiller-Dezsofi, G. Lax, G. Simig, Tetrahedron 39 (1996) 12821–12830.
- [4] G. Hornyak, J. Fetter, K. Lempert, L. Parkanyi, G. Nemeth, L. Poszavacz, G. Simig, J. Fluorine Chem. 108 (2001) 239–244.
- [5] M.R. Schneider, H. Schonenberger, R.T. Michel, H.P. Fortmeyer, J. Med. Chem. 25 (1982) 141–145.
- [6] R.W. Hartmann, A. Heindl, M. Schneider, H. Schonenberger, J. Med. Chem. 29 (1986) 322–328.
- [7] M.R. Schneider, H. Ball, J. Med. Chem. 29 (1986) 75-79.
- [8] D.J. Burton, S.W. Hansen, J. Fluorine Chem. 31 (1986) 461-465.
- [9] D.J. Burton, S.W. Hansen, J. Am. Chem. Soc. 108 (1986) 4229– 4230.
- [10] K.J. MacNeil, D.J. Burton, J. Org. Chem. 58 (1993) 4411–4417.
- [11] F.G. Drakesmith, O.J. Stewart, P. Tarrant, J. Org. Chem. 33 (1967) 280–285.
- [12] P.A. Morken, H. Lu, A. Nakamura, D.J. Burton, Tetrahedron Lett. 32 (1991) 4271–4274.
- [13] J.P. Begue, D. Bonnet-Delpon, D. Bouvet, M.H. Rock, J. Org. Chem. 61 (1996) 9114–9119.
- [14] D. Bouvet, H. Sdassi, M. Ourevitch, D. Bonnet-Delpon, J. Org. Chem. 65 (2000) 2104–2107.
- [15] S.A. Postovoi, Y.V. Zeifman, I.L. Knunyants, Izv. Akad. Nauk SSSR (1982) 2826–2830.

- [16] P.L. Heinze, D.J. Burton, J. Fluorine Chem. 31 (1986) 115-119.
- [17] W.R. Dolbier Jr., H. Koroniak, D.J. Burton, P.L. Heinze, A.R. Bailey, G.S. Shaw, S.W. Hansen, J. Am. Chem. Soc. 109 (1987) 219–220.
- [18] P.L. Heinze, D.J. Burton, J. Org. Chem. 53 (1988) 2714-2720.
- [19] B. Jiang, Y. Xu, J. Org. Chem. 56 (1991) 7336–7340.
- [20] B. Jiang, Y. Xu, Tetrahedron Lett. 33 (1992) 511-514.
- [21] P.A. Morken, D.J. Burton, J. Org. Chem. 58 (1993) 1167-1172.
- [22] G.-Q. Shi, X.-H. Huang, F. Hong, J. Org. Chem. 61 (1996) 3200– 3204.
- [23] Y. Xu, F. Jin, W. Huang, J. Org. Chem. 59 (1994) 2633-2641.
- [24] J. Ichikawa, M. Fujiwara, T. Okauchi, T. Minami, Synlett (1998) 927–928.
- [25] I.H. Jeong, Y.S. Park, B.T. Kim, Tetrahedron Lett. 41 (2000) 8917– 8921.
- [26] Y. Shen, G. Wang, Org. Lett. 4 (2002) 2083-2085.
- [27] I.H. Jeong, Y.K. Min, Y.S. Kim, K.Y. Cho, K.J. Kim, Bull. Korean Chem. Soc. 12 (1991) 355–356.
- [28] I.H. Jeong, Y.K. Min, Y.S. Kim, B.T. Kim, K.Y. Cho, Tetrahedron Lett. 35 (1994) 7783–7784.
- [29] D.J. Collins, J.J. Hobbs, C.W. Emmens, J. Med. Chem. 14 (1971) 952–957.
- [30] W.J. Dmowski, J. Fluorine Chem. 29 (1985) 273-286.
- [31] J.R. McCarthy, E.W. Huber, T.-B. Le, F.M. Laskovics, D.P. Matthews, Tetrahedron 52 (1996) 45–58.
- [32] A.P. Khrimian, A.B. DeMilo, R.M. Waters, N.J. Liquido, J.M. Nicholson, J. Org. Chem. 59 (1994) 8034–8039.
- [33] J.K. Stille, Pure Appl. Chem. 57 (1985) 1771-1780.
- [34] L.S. Liebeskind, R.W. Fengl, J. Org. Chem. 55 (1990) 5359– 5364.